328411 (14)

BE (4 ${ }^{\text {th }}$ Semester)
Examination, Nov-Dec 2021
Branch : AEI, EI, Et \& T, Mechatronics

MATHEMATICS IV

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part (a) of each question is compulsory. Attempt
any two part from (b), (c) and (d). Part (a) carries

2 marks. Part (b), (c) and (d) carry 7 marks
each.
Q. 1. (a) Define Bessel's function.
(b) Solve in series the equation:

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0
$$

(c) Prove that:

$$
J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left\{\frac{3-x^{2}}{x^{2}} \sin x-\frac{3}{x} \cos x\right\}
$$

(d) Prove that:

$$
(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)
$$

Q. 2. (a) State and explain linear partial differential equation.
(b) Solve :

$$
(m z-n y) \frac{\partial z}{\partial x}+(n x-\ell z) \frac{\partial z}{\partial y}=\ell y-m x
$$

(c) Solve :

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}=\cos x \cos 2 y
$$

(d) Solve :

$$
\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)
$$

Q. 3. (a) Explain one dimensional heat flow.
(b) A string a stretched and fastened to two points ℓ apart motion is started by displacing the string in the form $y=a \sin (\pi x / \ell)$ from which it is released at time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by :

$$
y(x, t)=a \sin (\pi x / \ell) \cos (\pi x t / \ell)
$$

(c) An insulated rod of length ℓ has its end A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$. Find the temperature at a distance x from A at time t .
(d) A tightly stretched string with fixed end points
$x=0$ and $x=\ell$ is initially in position given by
$y=y_{0} \sin ^{3}(\pi x / \ell)$ if it is released from rest
from this position. Find the displacement $y(x, t)$.

328411 (14)
Q. 4. (a) Define Z-transform.
(b) Find Z-transform of the following
(i) $\quad \ell^{\text {-an }}$
(ii) $n \sin x a$
(c) Find the inverse \mathbf{Z}-transform of :
(i) $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$
(ii) $\frac{5 z}{(2-z)(3 z-1)}$

Houz owt 71 $\frac{1}{1}$ ai sviloeteb ad litiw kneqmion
(d) Using Z-transform

Solve $y_{k+2}+6 y_{k+1}+9 y_{k}=2^{k}$
given that $y_{0}=y_{1}=0$
(6)
Q. 5. (a) Define random variable.
(b) A and B throw alternately with a pair of dice.

A wins if he throws 6 before B throw 7 and B
wins if he throws 7 before A throws 6 . If A
begins. Find his chance of winning.
(c) The probability that a pen manufactured by a company will be defective is $\frac{1}{10}$. If two such
pens are manufactured. Find the probability
that none will be defective.

(7)

(d) Fit a Poisson distribution to the following data
and test for its goodness of fit at level of
significance . 05

x	$:$	0	1	2	3
f	$:$	419	352	154	56

